Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа» с. Койгородок (МБОУ «СОШ» с. Койгородок)

РАССМОТРЕНО

на заседании ШМО учителей Заместитель директора (УМР) физики и информатики // Дед - Э.Н. Тебенькова физики и информатики (протокол №4 от 26 июня

2018 года).

Руководитель ШМО

Н.В. Турышева

СОГЛАСОВАНО:

УТВЕРЖДАЮ: директор МБОУ

«СОЩ» с. Койгородок Э.А. Кораева

76.2018г.№182-од)

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

АСТРОНОМИЯ

наименование учебного предмета

СРЕДНЕЕ ОБЩЕЕ ОБРАЗОВАНИЕ

уровень образования

1 год

срок реализации программы

Турышева Н.В., учитель физики

Ф.И.О. учителя, составившего рабочую программу учебного предмета

с. Койгородок 2018г.

Пояснительная записка

Рабочая программа по астрономии разработана с учетом требований Федерального государственного образовательного стандарта среднего общего образования, утверждённым приказом Министерства образования и науки Российской Федерации от 17 мая 2012 года № 413 (в редакции приказов Минобрнауки России от 29.12.2014г. № 1645, от 31.12.2015г. № 1578, от 29.06.2017г. № 613), примерной основной образовательной программы среднего общего образования (одобрена решением федерального учебно-методического объединения, протокол от 28 июня 2016г. № 2/16-з). Рабочая программа по астрономии разработана в соответствии с: основной образовательной программой среднего общего образования (10-11 классы) МБОУ «СОШ» с. Койгородок (утв. приказом от 27 июня 2018 года № 182-од), УМК: Астрономия: учебник для общеобразовательных учреждений, 11 класс, «Астрономия. 11 класс», Б. А. Воронцов-Вельяминов, Е. К. Страут, 2017г.

Цели и задачи изучения астрономии.

При изучении основ современной астрономической науки перед учащимися ставятся следующие цели:

- понять сущность повседневно наблюдаемых и редких астрономических явлений;
- познакомиться с научными методами и историей изучения Вселенной;
- получить представление о действии во Вселенной физических законов, открытых в земных условиях, и единстве мегамира и микромира;
- осознать свое место в Солнечной системе и Галактике;
- ощутить связь своего существования со всей историей эволюции Метагалактики;
- выработать сознательное отношение к активно внедряемой в нашу жизнь астрологии и другим оккультным (эзотерическим) наукам.

Главная задача курса — дать учащимся целостное представление о строении и эволюции Вселенной, раскрыть перед ними астрономическую картину мира XX в. Отсюда следует, что основной упор при изучении астрономии должен быть сделан на вопросы астрофизики, внегалактической астрономии, космогонии и космологии.

Общая характеристика учебного предмета.

Астрономия в российской школе всегда рассматривалась как курс, который, завершая физико-математическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной.

Место учебного предмета в учебном плане.

Изучение курса рассчитано на 34 часа. При планировании 2 часов в неделю курс может быть пройден в течение первого полугодия в 11 классе.

Важную роль в освоении курса играют проводимые во внеурочное время собственные наблюдения учащихся. Специфика планирования этих наблюдений определяется двумя обстоятельствами. Во-первых, они (за исключением наблюдений Солнца) должны проводиться в вечернее или ночное время. Во-вторых, объекты, природа которых изучается на том или ином уроке, могут быть в это время недоступны для наблюдений. При планировании наблюдений этих объектов, в особенности, планет, необходимо учитывать условия их видимости.

Планируемые результаты освоения учебного предмета

<u>Личностные результаты</u> в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества. Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):
- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
- воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

- приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям;
- готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;
- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и

навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности.

Планируемые метапредметные результаты освоения учебного предмета

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
 - сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты освоения учебного предмета

Требования к предметным результатам освоения учебного предмета «Астрономия» (базовый уровень) должны отражать:

- 1) сформированность представлений о строении Солнечной системы, эволюции звезд и Вселенной, пространственно-временных масштабах Вселенной;
 - 2) понимание сущности наблюдаемых во Вселенной явлений;
- 3) владение основополагающими астрономическими понятиями, теориями, законами и закономерностями, уверенное пользование астрономической терминологией и символикой;
- 4) сформированность представлений о значении астрономии в практической деятельности человека и дальнейшем научно-техническом развитии;
- 5) осознание роли отечественной науки в освоении и использовании космического пространства и развитии международного сотрудничества в этой области.

Содержание учебного предмета

1. Что изучает астрономия. Наблюдения — основа астрономии (2 ч).

Астрономия, ее связь с другими науками. Структура масштабы Вселенной. Особенности астрономических методов исследования. Телескопы и радиотелескопы. Всеволновая астрономия.

Демонстрации.

- 1. портреты выдающихся астрономов;
- 2. изображения объектов исследования в астрономии.

Предметные результаты освоения темы позволяют:

- воспроизводить сведения по истории развития астрономии, ее связях с физикой и математикой;
- использовать полученные ранее знания для объяснения устройства и принципа работы телескопа.

2. Практические основы астрономии (5 ч).

Звезды и созвездия. Звездные карты, глобусы и атласы. Видимое движение звезд на различных географических широтах. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.

Предметные результаты изучения данной темы позволяют:

- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
 - объяснять необходимость введения високосных лет и нового календарного стиля;
- •объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
 - применять звездную карту для поиска на небе определенных созвездий и звезд. **Демонстрации**.
 - 1. географический глобус Земли;
 - 2. глобус звездного неба;
 - 3. звездные карты;
 - 4. звездные каталоги и карты;
 - 5. карта часовых поясов;

- 6. модель небесной сферы;
- 7. разные виды часов (их изображения);
- 8. теллурий.

3. Строение Солнечной системы (7 ч).

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет. Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Предметные результаты освоения данной темы позволяют:

- воспроизводить исторические сведения о становлении развитии гелиоцентрической системы мира;
- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- •вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- •формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Демонстрации.

- 1. динамическая модель Солнечной системы;
- 2. изображения видимого движения планет, планетных конфигураций;
- 3. портреты Птолемея, Коперника, Кеплера, Ньютона;
- 4. схема Солнечной системы;
- 5. фотоизображения Солнца и Луны во время затмений.

4. Природа тел Солнечной системы (8 ч).

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Исследования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы. Метеоры, болиды и метеориты.

Предметные результаты изучение темы позволяют:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды, метеориты);
 - описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;

- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
 - описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероидно кометной опасности, возможности и способы ее предотвращения.

Демонстрации.

- 1. глобус Луны;
- 2. динамическая модель Солнечной системы;
- 3. изображения межпланетных космических аппаратов;
- 4. изображения объектов Солнечной системы;
- 5. космические снимки малых тел Солнечной системы;
- 6. космические снимки планет Солнечной системы;
- 7. таблицы физических и орбитальных характеристик планет Солнечной системы;
- В. фотография поверхности Луны.

5. Солнце и звезды (6 ч).

Излучение и температура Солнца. Состав и строение Солнца. Источник его энергии. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Звезды — далекие солнца. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Диаграмма «спектр—светимость». Массы и размеры звезд. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы.

Предметные результаты освоения темы позволяют:

• определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);

характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;

- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
 - объяснять механизм возникновения на Солнце грануляции и пятен;
 - описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
 - вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
 - сравнивать модели различных типов звезд с моделью Солнца;
 - объяснять причины изменения светимости переменных звезд;
 - описывать механизм вспышек Новых и Сверхновых;
 - оценивать время существования звезд в зависимости от их массы;
 - описывать этапы формирования и эволюции звезды;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Демонстрации.

- 1. диаграмма Герцшпрунга Рассела;
- 2. схема внутреннего строения звезд;
- 3. схема внутреннего строения Солнца;
- 4. схема эволюционных стадий развития звезд на диаграмме Герцшпрунга Рассела;
 - 5. фотографии активных образований на Солнце, атмосферы и короны Солнца;
 - 6. фотоизображения взрывов новых и сверхновых звезд;

7. фотоизображения Солнца и известных звезд.

6. Строение и эволюция Вселенной (5 ч).

Наша Галактика. Ее размеры и структура. Два типа населения Галактики. Межзвездная среда: газ и пыль. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы. Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.

Предметные результаты изучения темы позволяют:

- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
 - распознавать типы галактик (спиральные, эллиптические, неправильные);
 - сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;
- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
 - формулировать закон Хаббла;
- определять расстояние до галактик на основе закона Хаббла; по светимости Сверхновых;
 - оценивать возраст Вселенной на основе постоянной Хаббла;
- •интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы Горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва;
- интерпретировать современные данные об ускорении расширения Вселенной как результата действия антитяготения «темной энергии» вида материи, природа которой еще неизвестна.

Демонстрации.

- 1. изображения радиотелескопов и космических аппаратов, использованных для поиска жизни во Вселенной;
 - 2. схема строения Галактики;
 - 3. схемы моделей Вселенной;
 - 4. таблица схема основных этапов развития Вселенной;
 - 5. фотографии звездных скоплений и туманностей;
 - 6. фотографии Млечного Пути;
 - 7. фотографии разных типов галактик.

7. Жизнь и разум во Вселенной (2 ч).

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

Формы аттестации школьников.

Аттестация школьников, проводимая в системе, позволяет, наряду с формирующим контролем предметных знаний, проводить мониторинг универсальных и предметных учебных действий.

Рабочая программа предусматривает следующие формы аттестации школьников.

Входной контроль:

• контрольная работа (до 45 минут).

Текущая (формирующая) аттестация:

- самостоятельные работы (до 10 минут);
- лабораторно-практические работы (от 20 до 45 минут);
- фронтальные опыты (до 10 минут);
- диагностическое тестирование (остаточные знания по теме, усвоение текущего учебного материала, сопутствующее повторение) 5 15 минут.
 - контрольные работы (45 минут);

Промежуточная (констатирующая) аттестация:

• итоговая контрольная работа (45 минут).

Способы проверки достижения результатов обучения.

При изучении курса осуществляется комплексный контроль знаний и умений учащихся, включающий текущий контроль в процессе изучения материала, рубежный контроль в конце изучения завершенного круга вопросов и итоговый контроль в конце изучения курса. Предполагается сочетание различных форм проверки знаний и умений: устная проверка, тестирование, письменная проверка. Кроме того, учитывается участие учащихся в дискуссиях при обсуждении выполненных заданий, оцениваются рефераты учащихся и результаты проектной деятельности.

Достижение предметных результатов обучения контролируется в основном в процессе устной проверки знаний, при выполнении письменных проверочных и контрольных работ, тестов, при проведении наблюдений. Итоговая проверка достижения предметных результатов может быть организована в виде комплексной контрольной работы или зачета. На этом этапе проверки учащиеся защищают рефераты по изученной теме.

Достижение метапредметных результатов контролируется в процессе выполнения учащимися наблюдений. При этом отслеживается: умение учащихся поставить цель наблюдения, подобрать приборы, составить план выполнения наблюдения, представить результаты работы, сделать выводы, умение пользоваться измерительными приборами, оценивать погрешность измерения, записывать результат измерения с учетом погрешности, видеть возможности уменьшения погрешностей измерения. Кроме того, метапредметные результаты контролируются при подготовке учащимися сообщений, рефератов, проектов и их презентации. Оценивается умение работать с информацией, представленной в разной форме, умение в области ИКТ, умение установить межпредметные связи астрономии с другими предметами (физика, биология, химия, история и др.).

Личностные результаты обучения учащихся не подлежат количественной оценке, однако дается качественная оценка деятельности и поведения учащихся, которая может быть зафиксирована в портфолио учащегося.

Тематическое планирование.

№ п/п	Тема	Общее количество часов	Количество часов теории	Практические работы	Контрольные работы	Основные виды учебной деятельности учащегося	
	Что изучает астрономия. Наблюдения — основа астрономии.	2	2	_		 Поиск примеров, подтверждающих практическую направленность астрономии. Применяет знания, полученные в курсе физики, дляописании устройства телескопа. Характеризует преимущества наблюдений, проводимых из космоса. 	
	Практические основы астрономии.	5	3	2		 Подготовка презентации об истории названий созвездий и звезд. Применяет знания, полученные в курсе географии, о составлении карт различных проекциях. Работает со звездной картой при организации и проведении наблюдений Характеризует отличительные особенности суточного движения звезд полюсах, экваторе и в средних широтах Земли. Характеризует особенности суточного движения Солнца на полюсах.экваторе в средних широтах Земли Изучает основные фазы Луны. Описывает порядок их смены. Анализиру причины, по которым Луна всегда обращена к Земле одной стороной. Описывает взаимное расположение Земли, Луны и Солнца в момен затмений. Объясняет причины, по которым затмения Солнца и Луны не происход каждый месяц Подготовка и презентация сообщения об истории календаря. 	

						нового календарного стиля.
3	Строение Солнечной системы.	7	5	2		 Подготовка и презентация сообщения означении открытий Коперника и Галилея для формирования научной картины мира. Объясняет петлеобразное движение планет с использованием эпициклов и дифферентов. Описывает условия видимости планет, находящихся в различных конфигурациях. Решает задачи на вычисление звездных периодов обращения внутренних и внешних планет. Анализирует законы Кеплера, их значения для развития физики и астрономии. Решает задачи на вычисление расстояний планет от Солнца на основе третьего закона Кеплера. Решает задачи на вычисление расстояний и размеров объектов. Построение плана Солнечной системы в принятом масштабе с указанием положения планет на орбитах. Определение возможности их наблюдения на заданную дату. Решает задачи на вычисление массы планет. Объясняет механизм возникновения возмущений и приливов. Подготовка и презентация сообщения о КА, исследующих природу тел Солнечной системы.
4	Природа тел Солнечной системы.	8	5	1	2	 На основе знаний физических законов объясняет явления и процессы, происходящие в атмосферах планет. Описывает и сравнивает природы планет земной группы. Объяснение причин существующих различий. Подготовка и презентация сообщения о результатах исследований планет земной группы. Подготовка и презентация сообщения по этой проблеме. Участие в дискуссии. На основе знаний законов физики описание природы планет-гигантов. Подготовка и презентация сообщения о новых результатах иоследований планет гигантов, их спутников и колец. Анализирует определение понятия «планета».

						 Описывает внешний вид астероидов и комет. Объясняет процессы, происходящие в комете, при изменении ее расстояния от Солнца. Подготовка и презентация сообщения о способах обнаружения опасных космических объектов и предотвращения их столкновения с Землей. На основе знания законов физики описывает и объясняет явления метеора и болида. Подготовка сообщения о падении наиболее известных метеоритов.
5	Солнце и звезды.	6	4	1	1	 На основе знаний физических законов описывает и объясняет явления и процессы, наблюдаемые на Солнце. Описывает процессы, происходящие при термоядерных реакциях протонпротонного цикла. На основе знаний о плазме, полученных в курсе физики, описывает образование пятен, протуберанцев и других проявлений солнечной активности. Характеризует процессы солнечной активности и механизма их влияния на Землю. Определяет понятие «звезда». Указывает положение звезд на диаграмме «спектр — светимость» согласно их характеристикам. Анализирует основные группы диаграммы. На основе знаний по физике описывает пульсацию цефеид как автоколебательного процесса. Подготовка сообщения о способах обнаружения «экзопланет» и полученных результатах. На основе знаний по физике оценивает время свечения звезды по известной массе запасов водорода; для описания природы объектов на конечной стадии эволюции звезд.
6	Строение и эволюция Вселенной.	5	5			 Описывает строение и структуру Галактики. Изучает объекты плоской и сферической подсистем. Подготовка сообщения о развитии исследований Галактики.

						• На основе знаний по физике объясняет различные механизмы ра- диоизлучения.			
						• Описывает процесс формирования звезд из холодных газопылевых облаков.			
						• Определяет типы галактик.			
						Подготовка сообщения о наиболее интересных исследованиях галактик, квазаров и других далеких объектов.			
						• Применяет принцип Доплера для объяснения « красного смещения».			
						• Подготовка сообщения о деятельности Хаббла и Фридмана. Доказывает справедливость закона Хаббла для наблюдателя, расположенного в любой галактике.			
						• Подготовка и презентация сообщения о деятельности Гамова и .лауреатов Нобелевской премии по физике за работы по космологии.			
	Жизнь и разум во Вселенной.	2	1	_	1	• Подготовка и презентация сообщения о современном состоянии научных исследований по проблеме существования внеземной жизни во Вселенной.			
						• Участвует в дискуссии по этой проблеме.			
Всего	0	34	24	6	4				

Календарно-тематическое планирование 11 класс (1 час в неделю, всего — 34 часа).

№ и тема урока	Содержание урока	Формы и методы контроля	Домашнее задание
1. Что изучает астрономия.	Астрономия, со связь с другими науками. Развитие астрономии было вызвано практическими потребностями человека, начиная с глубокой древности. Астрономия, математика и физика развивались в тесной связи друг с другом. Структура и масштабы Вселенной.	Беседа. Работа с текстом учебника и иллюстрациями.	§ 1
2 Наблюдения — основа астрономии.	Наземные и космические приборы и методы исследования астрономических объектов. Телескопы и радиотелескопы. Всеволновая астрономия.	Устный опрос. Беседа.	§ 2
3. Звезды и созвездия. Небесные координаты. Звездные карты. Практическая работа № 1 «Определение горизонтальныхнебесных координат».	Звездная величина как характеристика освещенности, создаваемой звездой. Согласно шкале звездных величин разность на 5 величин, различие в потоках света в 100 раз. Экваториальная система координат: прямое восхождение и склонение. Использование звездной карты для определения объектов, которые можно наблюдать в заданный момент времени.	Фронтальный опрос. Беседа. Практическая работа.	§ 3, 4
4. Видимое движение звезд на различных географических широтах.	Высота полюса мира над горизонтом и ее зависимость от географической широты места наблюдения. Небесный меридиан. Кульминация светил. Определение географической широты по измерению высоты звезд в момент их кульминации.	Фронтальный опрос. Беседа. Работа с текстом учебника.	§ 5

 Годичное движение Солнца. Эклиптика. Практическая работа № 2 «Определение экваториальныхнебесных координат». 	Эклиптика и зодиакальные созвездия. Наклон эклиптики к небесному экватору. Положение Солнца на эклиптике в дни равноденствий и солнцестояний. Изменение в течение года продолжительности дня и ночи на различных географических широтах.	Индивидуальный опрос. Беседа. Практическая работа.	§ 6
6. Движение и фазы Луны. Затмения Солнца и Луны.	Луна — ближайшее к Земле небесное тело.ее единственный естественный спутник. Период обращения Луны вокруг Земли и вокруг своей оси — сидерический (звездный) месяц. Синодический месяц — период полной смены фаз Луны. Условия наступления солнечных и лунных затмений. Их периодичность. Полные, частные и кольцеобразные затмения Солнца. Полные и частные затмения Луны. Предвычисление будущих затмений.	Фронтальный опрос. Беседа.	§ 7, 8
7. Время и календарь.	Точное время и определение географической долготы. Часовые пояса. Местное и поясное, летнее и зимнее время. Календарь — система счета длительных промежутков времени. История календаря. Високосные годы. Старый и новый стиль.	Тестирование. Беседа.	§ 9
8. Развитие представлений о строении мира.	Геоцентрическая система мира Аристотеля-Птолемея. Система эпициклов и дифферентов для объяснения петлеобразного движения планет. Создание Коперником гелиоцентрической системы мира. Роль Галилея в становлении новой системы мира.	Индивидуальный опрос. Беседа.	§ 10
9. Конфигурации планет. Синодический период.	Внутренние и внешние планеты. Конфигурации планет: противостояние и соединение. Периодическое изменение условий видимости внутренних и внешних планет. Связь синодического и сидерического (звездного) периодов обращения планет.	Тестирование. Беседа.	§ 11

10. Законы движения планет Солнечной системы. Практическая работа № 3 «Решение задач по теме «Конфигурация планет».	Три закона Кеплера. Эллипс. Изменение скорости движения планет по эллиптическим орбитам. Открытие Кеплером законов движения планет — важный шаг на пути становления механики. Третий закон — основа для вычисления относительных расстояний планет от Солнца.	Фронтальный опрос. Практическая работа.	§ 12
11. Определение расстояний и размеров тел в Солнечной системе.	Размеры и форма Земли. Триангуляция. Горизонтальный параллакс. Угловые и линейные размеры тел Солнечной системы.	Индивидуальный опрос. Беседа.	§ 13
12. Практическая работа № 4 с планом Солнечной системы.	План Солнечной системы в масштабе 1 см к 30 млн км с указанием положения планет на орбитах согласно данным «Школьного астрономического календаря» на текущий учебный год.	Практическая работа.	_
13. Открытие и применение закона всемирного тяготения.	Подтверждение справедливости закона тяготения для Луны и планет. Возмущения в движении тел Солнечной системы. Открытие планеты Нептун. Определение массы небесных тел. Масса и плотность Земли. Приливы и отливы	Фронтальный опрос. Беседа.	§ 14 (1-5)
14. Движение искусственных спутников, космических аппаратов (КА) в Солнечной системе.	Время старта КА и траектории полета к пллнетам и другим телам Солнечной системы. Выполнение маневров, необходимых для посадки на поверхность планеты или выход на орбиту вокруг нее.	Индивидуальный опрос. Беседа.	§ 14 (6)
15. Контрольная работа № 1. Солнечная система как комплекс тел, имеющих общее происхождение.	Контрольная работа по итогам 1 полугодия (15 мин.). Гипотеза о формировании всех тел Солнечной системы в процессе длительной эволюции холодного газопылевого облака. Объяснение их природы на основе этой гипотезы.	Контрольная работа. Беседа.	§ 15, 16

_	Краткие сведения о природе Земли. Условия на поверхности Луны. Два типа лунной поверхности — моря и материки. Горы, кратеры и другие формы рельефа. Процессы формирования поверхности Луны и ее рельефа. Результаты исследований, проведенных автоматическими аппаратами и астронавтами. Внутреннее строение Луны. Химический состав лунных пород. Обнаружение воды на Луне. Перспективы освоения Луны.	Фронтальный опрос. Беседа.	§ 17
17. Природа планет земной группы. Практическая работа № 5 «Составление сравнительных ххарактеристик планет земной группы».	Сходство внутреннего строения и химического состава планет земной группы. Рельеф поверхности. Вулканизм и тектоника. Метеоритные кратеры. Особенности температурных условий на Меркурии, Венере и Марсе. Отличия состава атмосферы Земли от атмосфер Марса и Венеры. Сезонные изменения в атмосфере и на поверхности Марса. Состояние воды на Марсе в прошлом и в настоящее время. Эволюция природы планет. Поиски жизни на Марсе.	Беседа. Практическая работа.	§ 18
18. Урок-дискуссия «Парниковый эффект — польза или вред?».	Обсуждение различных аспектов проблем, связанных с существованием парникового эффекта и его роли в формировании и сохранении уникальной природы Земли.	Индивидуальный опрос. Беседа.	_
19. Планеты-гиганты, их спутники и кольца.	Химический состав и внутреннее строение планет- гигантов. Источники энергии в недрах планет. Облачный покров и атмосферная циркуляция. Разнообразие природы спутников. Сходство при роды спутников с планетами земной группы и Луной. Наличие атмосфер у крупнейших спутников. Строение и состав колец.	Фронтальный опрос. Беседа.	§ 19

20. Малые тела Солнечной системы (астероиды, карликовые планеты и кометы).	Астероиды главного пояса. Их размеры и численность. Малые тела пояса Койпера. Плутон и другие карликовые планеты. Кометы. Их строение и состав. Орбиты комет. Общая численность комет. Кометное облако Оорта. Астероидно-кометная опасность. Возможности и способы ее предотвращения.	Тестирование. Беседа.	§ 20 (1-3)
21. Метеоры, болиды, метеориты. Контрольная работа № 2 по теме «Природа тел Солнечной системы».	Одиночные метеоры. Скорости встречи с Землей. Небольшие тела (метеороиды). Метеорные потоки, их связь с кометами. Крупные тела. Явление болида, падение метеорита. Классификация метеоритов: железные, каменные, железокаменные. Контрольная работа № 2 по теме «Природа тел Солнечной системы» (20 мин.).	Беседа. Контрольная работа.	§ 20 (4)
22. Анализ выполнения контрольной работы № 2.Солнце, состав и внутреннее строение.	Источник энергии Солнца и звезд — термоядерные реакции. Перенос энергии внутри Солнца. Строение его атмосферы. Грануляция. Солнечная корона. Обнаружение потока солнечных нейтрино. Значение этого открытия для физики и астрофизики.	Беседа	§ 21 (1-3)
23. Солнечная активность и ее влияние на Землю.	Проявления солнечной активности: солнечные пятна, протуберанцы, вспышки, корональные выбросы массы. Потоки солнечной плазмы. Их влияние на состояние магнитосферы Земли. Магнитные бури, полярные сияния и другие геофизические явления, влияющие на радиосвязь, сбои в линиях электропередачи. Период изменения солнечной активности.	Фронтальный опрос. Беседа	§ 21 (4)
24. Физическая природа звезд.	Звезда — природный термоядерный реактор. Светимость звезды. Многообразие мира звезд. Их спектральная классификация. Звезды-гиганты и звезды-карлики. Диаграмма «спектр — светимость».	Тестирование. Беседа	§ 22

25. Массы и размеры звезд.	Двойные и кратные звезды. Звездные скопления. Их масса, плотность, состав и возраст. Модели звезд.	Индивидуальный опрос. Беседа.	§ 23
26. Переменные и нестационарные звезды. Контрольная работа № 3 по теме «Солнце и звезды».	Цефеиды — природные автоколебательные системы. Зависимость «период — светимость». Затменно-двойные звезды. Вспышки Новых —явление в тесных системах двойных звезд. Открытие «экзопланет» — планет и планетных систем вокруг других звезд. Контрольная работа № 3 по теме «Солнце и звезды» (15 мин.).	Беседа. Контрольная работа.	§ 24
27. Анализ выполнения контрольной работы № 3.Эволюция звезд. Практическая работа № 6 «Решение задач по теме «Ххарактеристики звезд».	Зависимость скорости и продолжительности эволюции звезд от их массы. Вспышка Сверхновой — взрыв звезды в конце ее эволюции. Конечные стадии жизни звезд: белые карлики, нейтронные звезды (пульсары), черные дыры.	Беседа. Практическая работа.	_
28. Проверочная работа.	Проверочная работа по темам: «Строение Солнечной системы», «Природа тел Солнечной системы», «Солнце и звезды».	Проверочная работа.	_
29. Наша Галактика.	Размеры и строение Галактики. Расположение и движение Солнца. Плоская и сферическая подсистемы Галактики. Ядро и спиральные рукава Галактики. Вращение Галактики и проблема «скрытой массы».		§ 25 (1, 2)
30. Наша Галактика.	Радиоизлучение межзвездного вещества. Его состав. Области звездообразования. Обнаружение сложных органических молекул. Взаимосвязь звезд и межзвездной среды. Планетарные туманности — остатки вспышек Сверхновых звезд.	Тестирование. Беседа.	§ 25 (3, 4)

31. Другие звездные системы — галактики.	Спиральные, эллиптические и неправильные галактики. Их отличительные особенности, размеры, масса, количество звезд. Сверхмассивные черные дыры в ядрах галактик. Квазары и радиогалактики. Взаимодействующие галактики. Скопления и сверхскопления галактик.		§ 26
32. Космология начала XX в. Основы современной космологии.	Общая теория относительности. Стационарная Вселенная А. Эйнштейна. Вывод Л. Л. Фридмана о нестационарности Вселенной. «Красное смешение» в спектрах галактик и закон Хаббла. Расширение Вселенной происходит однородно и изотропно. Гипотеза Г. А. Гамова о горячем начале Вселенной, ее обоснование и подтверждение. Реликтовое излучение. Теория Большого взрыва. Образование химических элементов. Формирование галактик и звезд. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.	Беседа.	§ 27
33. Урок-конференция «Одиноки ли мы во Вселенной?»	Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности радиоастрономии и космонавтики для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.	Конференция.	§ 28
34. Промежуточная аттестация.	Контрольная работа № 4 по итогам года (1 час).	Контрольная работа.	_

Методическое и материально-техническое обеспечение учебного процесса, цифровые образовательные ресурсы. Методическое обеспечение учебного процесса.

- 1. Воронцов-Вельяминов, Б. А., Страут, Е. К. Астрономия. 11 класс. Учебник. М.: Дрофа, 2017.
- 2. Страут, Е. К. Методическое пособие к учебнику «Астрономия. 11 класс» авторов Б. А. Воронцова-Вельяминова, Е. К. Страута. М.: Дрофа, 2017.

Материально-техническое обеспечение учебного процесса.

Наглядные пособия.

1	Вселенная.

- 2. Другие галактики.
- 3. Звезды.
- 4. Луна.
- 5. Малые тела Солнечной системы.

6. Наша Галактика.

- 7. Планеты земной группы.
- 8. Планеты-гиганты.
- 9. Солнце.
- 10. Строение Солнца.

Технические средства.

- 1. Глобус Луны.
- 2. Звездный глобус.
- 3. Интерактивная доска.
- 4. Карта Венеры.
- 5. Карта Луны.
- 6. Карта Марса
- 7. Компьютер.

- 8. Модель небесной сферы.
- 9. Мультимедийный проектор.
- 10. Подвижная карта звездного неба.
- 11. Принтер.
- 12. Спектроскоп.
- 13. Телескоп.
- 14. Теллурий.

Цифровые образовательные ресурсы.

Программы-планетарии.

- 1. CENTAURE (<u>www.astrosurf.com</u>).
- 2. VIRTUAL SKY(<u>www.virtualskysoft.de</u>),ALPHA.
- 3. Celestia (https://celestiaproject.net).

Интернет-ресурсы.

- 1. <u>Stellarium</u> бесплатная программа для просмотра звездного неба, виртуальный планетарий.
- 2. <u>WorldWideTelescope</u> программа, помогающая любителям астрономии исследовать Вселенную.

•